Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Int J Environ Res Public Health ; 20(3)2023 01 31.
Article in English | MEDLINE | ID: covidwho-2225169

ABSTRACT

Background. Long COVID-19 symptoms appeared in many COVID-19 survivors. However, the prevalence and symptoms associated with long COVID-19 and its comorbidities have not been established. Methods. In total, 312 patients with long COVID-19 from 21 primary care centers were included in the study. At the six-month follow-up, their lung function was assessed by computerized tomography (CT) and spirometry, whereas cardiac function was assessed by elec-trocardiogram (ECG), Holter ECG, echocardiography, 24 h blood pressure monitoring, and a six-minute walk test (6MWT). Results. Of the 312 persons investigated, significantly higher sys-tolic and diastolic blood pressure, left ventricular hypertrophy, and elevated NT-proBNP were revealed in participants with hypertension or type 2 diabetes. Left ventricular diastolic dysfunc-tion was more frequently present in patients with hypertension. The most common registered CT abnormalities were fibrotic changes (83, 36.6%) and mediastinal lymphadenopathy (23, 10.1%). Among the tested biochemical parameters, three associations were found in long COVID-19 patients with hypertension but not diabetes: increased hemoglobin, fibrinogen, and ferritin. Nine patients had persisting IgM antibodies to SARS-CoV-2. Conclusions. We demon-strated a strong association between signs of cardiac dysfunction and lung fibrotic changes with comorbidities in a cohort of long COVID-19 subjects.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Hypertension , Humans , Post-Acute COVID-19 Syndrome , Diabetes Mellitus, Type 2/complications , COVID-19/epidemiology , COVID-19/complications , SARS-CoV-2 , Hypertension/complications , Lung
2.
Respir Res ; 23(1): 278, 2022 Oct 10.
Article in English | MEDLINE | ID: covidwho-2064808

ABSTRACT

BACKGROUND: SARS-CoV-2 pre-existing T-cell immune reactivity can be present in some people. A general perturbation of the main peripheral lymphocyte subsets has been described in severe COVID-19 patients, but very few studies assessed the general memory T-cell homeostasis in the acute phase of COVID-19. Here, we performed a general analysis of the main memory T cell populations in the peripheral blood of patients admitted to the hospital for a confirmed or probable COVID-19 diagnosis. METHODS: In this cross-sectional study, adult patients (aged ≥ 18 years) needing hospital admission for respiratory disease due to confirmed or probable COVID-19, were recruited before starting the therapeutic protocol for this disease. In addition to the assessment of the general lymphocyte subpopulations in the early phase of COVID-19, central memory T cells (Tmcentr cells: CD45RO+CCR7+) and effector memory T cells (Tmeff cells: CD45RO+CCR7-) were assessed by multi-color flow cytometry, in comparison to a control group. RESULTS: During the study period, 148 study participants were recruited. Among them, 58 patients turned out positive for SARS-CoV-2 PCR (including both patients with interstitial pneumonia [PCR+Pn+] and without this complication [PCR+Pn-]), whereas the remaining 90 patients resulted to be SARS-CoV-2 PCR negative, even though all were affected with interstitial pneumonia [PCR-Pn+]. Additionally, 28 control patients without any ongoing respiratory disease were recruited. A clear unbalance in the T memory compartment emerged from this analysis on the whole pool of T cells (CD3+ cells), showing a significant increase in Tmcentr cells and, conversely, a significant decrease in Tmeff cells in both pneumonia groups (PCR+Pn+ and PCR-Pn+) compared to the controls; PCR+Pn- group showed trends comprised between patients with pneumonia (from one side) and the control group (from the other side). This perturbation inside the memory T cell compartment was also observed in the individual analysis of the four main T cell subpopulations, based upon the differential expression of CD4 and/or CD8 markers. CONCLUSION: Overall, we observed both absolute and relative increases of Tmcentr cells and decrease of Tmeff cells in patients affected with interstitial pneumonia (regardless of the positive or negative results of SARS-CoV-2 PCR), compared to controls. These results need confirmation from additional research, in order to consider this finding as a potential biological marker of interstitial lung involvement in patients affected with viral respiratory infections.


Subject(s)
COVID-19 , Lung Diseases, Interstitial , Pneumonia , Adult , Biomarkers , COVID-19 Testing , Cross-Sectional Studies , Humans , Lung Diseases, Interstitial/diagnosis , Memory T Cells , Receptors, CCR7 , SARS-CoV-2
3.
PLoS One ; 16(12): e0261272, 2021.
Article in English | MEDLINE | ID: covidwho-1581756

ABSTRACT

BACKGROUND: First reported case of Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) in Kazakhstan was identified in March 2020. Many specialized tertiary hospitals in Kazakhstan including National Research Cardiac Surgery Center (NRCSC) were re-organized to accept coronavirus disease 2019 (COVID-19) infected patients during summer months of 2020. Although many studies from worldwide reported their experience in treating patients with COVID-19, there are limited data available from the Central Asia countries. The aim of this study is to identify predictors of mortality associated with COVID-19 in NRCSC tertiary hospital in Nur-Sultan, Kazakhstan. METHODS: This is a retrospective cohort study of patients admitted to the NRCSC between June 1st-August 31st 2020 with COVID-19. Demographic, clinical and laboratory data were collected from electronic records. In-hospital mortality was assessed as an outcome. Patients were followed-up until in-hospital death or discharge from the hospital. Descriptive statistics and factors associated with mortality were assessed using univariate and multivariate logistic regression models. RESULTS: Two hundred thirty-nine admissions were recorded during the follow-up period. Mean age was 57 years and 61% were males. Median duration of stay at the hospital was 8 days and 34 (14%) patients died during the hospitalization. Non-survivors were more likely to be admitted later from the disease onset, with higher fever, lower oxygen saturation and increased respiratory rate compared to survivors. Leukocytosis, lymphopenia, anemia, elevated liver and kidney function tests, hypoproteinemia, elevated inflammatory markers (C-reactive protein (CRP), ferritin, and lactate dehydrogenase (LDH)) and coagulation tests (fibrinogen, D-dimer, international normalized ratio (INR), and activated partial thromboplastin time (aPTT)) at admission were associated with mortality. Age (OR 1.2, CI:1.01-1.43), respiratory rate (OR 1.38, CI: 1.07-1.77), and CRP (OR 1.39, CI: 1.04-1.87) were determined to be independent predictors of mortality. CONCLUSION: This study describes 14% mortality rate from COVID-19 in the tertiary hospital. Many abnormal clinical and laboratory variables at admission were associated with poor outcome. Age, respiratory rate and CRP were found to be independent predictors of mortality. Our finding would help healthcare providers to predict the risk factors associated with high risk of mortality. Further investigations involving large cohorts should be provided to support our findings.


Subject(s)
COVID-19/mortality , Hospital Mortality/trends , Adult , Age Factors , Aged , Biomarkers , COVID-19/epidemiology , Cohort Studies , Female , Hospitalization/statistics & numerical data , Hospitalization/trends , Humans , Kazakhstan/epidemiology , Male , Middle Aged , Prognosis , Respiratory Rate , Retrospective Studies , Risk Factors , SARS-CoV-2/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL